Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures.

نویسندگان

  • Libing Zhang
  • Lishi Yan
  • Zheming Wang
  • Dhrubojyoti D Laskar
  • Marie S Swita
  • John R Cort
  • Bin Yang
چکیده

BACKGROUND Flowthrough pretreatment of biomass is a critical step in lignin valorization via conversion of lignin derivatives to high-value products, a function vital to the economic efficiency of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. RESULTS In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05 % (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270 °C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatments at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. CONCLUSIONS Elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100 % by improving G unit removal besides S unit removal in flowthrough system. Only mild lignin structural modification was caused by flowthrough pretreatment. A lignin transformation pathway was proposed to explain the complexity of the lignin structural changes during hot water and dilute acid flowthrough pretreatment.Graphical abstractLignin transformations in water-only and dilute acid flowthrough pretreatment at elevated temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of total sugar and lignin yields through dissolution of poplar wood by hot water and dilute acid flowthrough pretreatment

BACKGROUND Pretreatment is a vital but expensive step in biomass biofuel production. Overall, most of this past effort has been directed at maximizing sugar yields from hemicellulose and cellulose through trials with different chemicals, operating conditions, and equipment configurations. Flowthrough pretreatment provides a promising platform to dissolution of lignocellulosic biomass to generat...

متن کامل

Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance

BACKGROUND Flowthrough pretreatment is capable of removing much higher quantities of hemicellulose and lignin from lignocellulosic biomass than batch pretreatment performed at otherwise similar conditions. Comparison of these two pretreatment configurations for sugar yields and lignin removal can provide insights into lignocellulosic biomass deconstruction. Therefore, we applied liquid hot wate...

متن کامل

Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies.

Adsorption of cellulase on solids resulting from pretreatment of poplar wood by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid (DA), flowthrough (FT), lime, and sulfur dioxide (SO(2)) and pure Avicel glucan was measured at 4 degrees C, as were adsorption and desorption of cellulase and adsorption of beta-glucosidase for lignin left after enzymatic...

متن کامل

Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.

In order to investigate changes in substrate chemical and physical features after pretreatment, several characterizations were performed on untreated (UT) corn stover and poplar and their solids resulting pretreatments by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, flowthrough, lime, and SO(2) technologies. In addition to measuring the chemica...

متن کامل

Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose.

Compared with batch systems, flowthrough and countercurrent reactors have important potential advantages for pretreating cellulosic biomass, including higher hemicellulose sugar yields, enhanced cellulose digestibility, and reduced chemical additions. Unfortunately, they suffer from high water and energy use. To better understand these trade-offs, comparative data are reported on xylan and lign...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology for biofuels

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015